
REPRODUCED FROM
BEST AVAILABLE COPY

SECURITY CLASSIFICATION OF THIS PAGE (When Daee Entered.)REDNTUCON

1. REPORT NUMBER 2. GOVT AC CESSION NO. 3. RECIPIENT'S CATALOG NUMBER

A l &etile 5AD R R B B L S I . TYPE OF REPORT & PERIOD COVERED

k:TIXING( PRO AB LIEI POSITION- FINAL ,

'~1 FXING ODEL6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(s)

Prof. J. Ferling, Prof. L Knop, Prof. NAS7-918
J_ Denton, W. Duquette, L. Harris, Y.
Lohse, S. Turicchi, D. Vela

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Math Clinic, Claremont Graduate School RE *'TWO~IIfPu1E.C 7Claremont McKenna College
Claremont, CA 91711

I I. CONTROLLING OFFICE HNAME A14D ADDRESS 12. REPORT DATE

Commander, USAICS 30 June, 1985
ATTN: ATSI-CD-SF 13. NUMBER OF PAGES

Ft. Huachuca, AZ 85613-7000 38
14. M4ONITORING AGENCY NAME A AoFRESS(ll dIlle~rant fron Conltroflling Office) IS. SECURITY CLASS. (of thise report)

Jet Propulsion Laboratory ATTN: 126-200 UNCLASSIFIED

cc California Institute of Technology _____________

4800 Oak Grove Drive 15a. DECL ASSI FICATION/ DOWNGRADINGCA SCHEDULEPasdea, A 1 09m
6"A lit lb. DISTRIBUTION STATEMENT (*( this Report)

co Approved for Public Dissemination

DTI

St. SUPPLEMENTARY NOTES

Prre ared under contract to Jet Propulsion Laboratory for the US
A-rmy Tnte--lige nee center and_ school'Is Combat -Dev-e-o-pe-r-X-Su-Ppor-r

Fac-ility-

IS. KEY WORDS (Continue an revec.. side it ne~cessay and Identify by block nianb.,)

* - ~ DIRECTION FINDINGIISTANSFIELD'S MODELLINE OF BEARINGIINORMAI. DIS-
( TRIBUTIONIERROR DISTRIBUTION,BIVARIATE NORMAL DISTRIBUTION,CON-

FIDENCE REGIONS,CONFIDENCE ELLIPSES,PROBABILITY DENSITY,DENSITY:~ ~ / FUNCTION,PROBABILITY REGIONS,TOLERANCE REGIONS

ý'ýThis is one of a series o alortm nlyi reports performed
4.' for the US Army Intelligence Center and School covering selected

__algorithms in existing or planned Intelligence and Electronic
Warfare (IEW) Systems. This report constructs a mathematical
model of position fixing using one or two sensors for comparison
with previously employed models. The impact of relaxation of[certain assumptions in older models upon the derived confidence

DD~1473 EDIT1101 OF I NOV 66 IS OBSOLETIE

- SEcusrTy CLASSIFICATION OF THIS PAG-E (When Does Fentered)



4

SECURITY CLASSIFICATION OF THIS PAGL(Wha Data Entsted)

tI
:- ellipses is examined, particularly with respect to the actual

contained probability within the ellipses. •"

IA,/

" BS AI

.1

'I

"RPOUE"RM,______________
BS VIAL OYS>NIVCASFCTO FTISPG(I. ~a~r.d



JPL D-186

"INSTITUTE OF DECISION SCIENCE
FOR BUSINESS & PUBLIC POLICY

A NON-STANDARD PROBABILISTICPOSITION-FIXING MODEL
j 

Conducted at

Institute of Decisicn Science
Claremont Mc:Kenna College

for

Mathematics Clini;,

Claremont Graduate kShool

FINAL REPORT

Jet Propulsion Laboratory

June 1985

fUa,
Claremont McKenna College 9 N
Claremont, California 91711

4LA

UAA D09
REPRODUCED FROM

BEST AVAILABLE COPY



U.S. ARMY INTELLIOENCE CENTER AND SCHOOL
Software Analysis and Management System

A Non-Standard Probabilistic Position-Fixing Model

June 30, 1985

I

Concuri

ames W.. Gillis; Leader Edward.4. Reoords, Manager
Se ' AlSorithm Methodology Subgroup USAMS Thsk Team

t 'I

J* P. MoClure, Manager Y kio Nakaural MarAger
Ground Data Systems Section tfense ornatioui Systema Program

II
JET PROPULSION LABORATORY

California Institute of Technology
Pasadena, California

-S. SAW,



PREFACE

The work described in this publication was performed at the Institute of
Decision Science Claremont HoKenna College, sponsored by the United States
Army Intelligenoe Center and School. The writing and publication of this
paper was supported by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space

Administration.

By.. . .. .-- . .

ctlbutelon I

ANaTlbSlty Codes

By ... .S .ecia.

(0. '4



THE

MATHEMATICS CLINIC

!m

CLINIC PARTICIPANTS

Will Duquette
Lisa Harris
Yvette Lohse
Scott Turicchi
Dan Vela

Professor James Denton : Faculty Consultant
Professor Larry Knop : Faculty Consultant
Professor John A. Ferling : Faculty Advisor

4 35



ACKNL- ,1L.FDGO1NTS

The Clarenmnt Mathematics Clinic Team would like to express

their appreciation to the Jet Propulsion Laboratory for the

opportunity to be involved in this project.. We would like to

especially thank our JPL liaisons Martha Ann Oiesel and James W.

Gillls, as well as Sgt. Nick Sizemore. The Clinic has profited

from their guidanoe, patience, and support.

The CliniO expresses a special thanks to Robert Walters, who

enabled the Clinic members to produce plots of our work and

allowed us to make use of the Rose Institute's digitizer.

e+

' ' , -' S., , .,¶. , . , . , ,.. . . ,-, .. •. . .) , r ," ., .-,. , . . . . . •• . ., . , , , . , .

, ,. ... .. ... .. .., ...... .....(.. ........ •. ...... ... ..• ..... ... ..... .• •. ... .. ..... ..... , . ..• , , .'.•• .. .'. ..... ..... "" .. +• • , ...



TABLJE OF CONTENTS

Section I Introduction - 1

Section 11 St-ansf told's Model - ------ 2

Section III Modifiomtionsi The Clinic's Model -5

Section IV Methods to Determine F'unctional Form - 7

Section V Comparison of the Confidence Region
Methods------------------------11

Section VI Sensor Location Error --------- ----13

Section VII Other Topics--------- ------- ---- 15

Section VIII Conclusion --- -- -- -- -- 1

Tables,-- --------- ------- ------ ------ 18

¶ Figures------ ------- ----- ------- ------- --- 21

R~eferences---------------------------------38

I M



I. Introduction

This is the final report of the CCS/CMC Mathematics Clinic.
Our project was for the Ground Data Systems section of the
Intelligence Analysis Group at the Jet Propulsion Laboratory.
Our project concerned the gathering of intelligence information
through radio direction finding and fixing. We focused on the
way radio sensors may be used to locate radio emitters such as
radio transmitters or radar sets, and on errors in the readings
returned by such sensors. The goal was to use this information,
taking into account various errors, so that a region can be
mapped around an estimate of the emitter location such that the
true location of the emitter lies in this region with a specified
probability.

We examined two models of a simple intelligence gathering
scenario, both of which were restricted to the two-sensor case.
The first was based on the classical assumptions of df fixing
originally proposed by R.G. Stansfield. The second was a model

7.- constructed by the Clinic, which was created by relaxing one of
Stansfield's simplifying assumptions. Dur analysis of these
models revealed that this particular assumption of Stansfield's
introduces an additional error which is eliminated in the model
constructed by the Clinic. The goal of this analysis was to
critique the methods currently used to find confidence regions
about location estimates.

In this report, we first discuss Stansfield's model as
applied to the two-sensor case and its implications for the
construction of confidence regions. Second, we describe our
modification of the classical model, and certain subsequent
analytical complexities. Third, we present the methods that we
employed to mitigate the effects of these complexities. Fourth,
we compare the results of our model with those of the Stansfield
model. We then examine other types of errors originating from
the radio sensors and their placement, and show in particular
that a two-dimensional error in the location of a sensor is
equivalent to a one-dimensional angular error -- a special case
of our general model. In addition we will discuss several
related topics, including a one-sensor model, systematic error,
and the use of a digitizer or other computer analysis aids.
Finally, we discuss areas for future research and state our final
conclusions.



II. Stansfield's Model

The classical df fixing model was studied by R.G. Stansfield
during World War II. Here we use a simple case of the general
model with two radio sensors and a single emitter. In Figure I
the sensors are denoted by SI and S2, and the emitter Is labeled
E. Each sensor detects the radio signals broadcast by the:" emitter and returns an estimate of the line of bearing from the
sensor to the emitter. The angles the true 1lines of bearing make
with the baseline are denoted by Wu(Alpba) and PL(Beta)
respectively. However, it is improbable that the sensors would

ever return exactly these lines of bearing, due to a variety of
factors such as operator error, equipment error, terrain effects
and atmospheric conditions. We will group these effects under
the heading "measurement error."

The question arises as to how this measurement error is
Squantified. Clearly, these errors will be in degrees since the
4 readings returned by the sensors are themselves in degrees.

However, in order to simplify the analysis, Stansfield made a
number of important assumptions, which are enumerated below.
Assumption (3) is particularly relevant at this point.

£ (1) The earth is flat near the true position of the
transmitter.

(2) The bearing lines are straight.

S(3) An error of observation displaces the bearing line
parallel to itself.

(4) Errors in separate bearings contributing to a fix are
independent.

(5) The errors are normally distributed about a man of
zero, and the variances are known.

The third assumption is significant, and is detailed in
Figure 2. Suppose that sensor 2 has returned the true line of
bearing from itself to the emitter, while sensor 1 is in error.
That is, sensor 1 returns the angle Alpha, and thus the line of
bearing in Figure 2 labeled 12. Examination of these readings
would place the estimate of the emitter's location at E'. Now,
this is where Assumpticn 3 makes itself felt. Rather than
measuring the error in sensor 1 's reading by the difference
Mu(Alpha) - Alpha, Stansfield draws a new line through point E'
parallel to the true line of bearing from sensor I to the
emitter. He measures the error, D1, in terms of the distance

2



between the true line of bearing and its parallel displacement at
E'. Put another way, the error D1 in sensor 1's reading is the
perpendicular distance from E' to the true line of bearing.
Errors in the reading from sensor 2 are dealt with similarly.

The essence of Stansfield's simplifying assumption is this
-- the error in a sensor reading may be measured by this parallel
displacement (or perpendicular distance) without regard for the
corresponding angular error. Further, he makes the following
assumption about the nature of the error: the distance between
the true line of bearing and the parallel displaced line follows
the normal probability law with a mean of zero and acme known
standard deviation. Since this assumption is assumed to hold for
both sensors, the estimate of the location will follow the
bivariate normal probability law. The density function for this
distribution is shown in Equation 1.

IF(1) (u $ -) a p [2]up 2va a a ' 2 2, tar,

This is a desirable result as the bivariate normal is a well-
, understood probability law with many useful properties. Thus,

the above simplifying assumption has ramifications for the
estimate of the emitter location, which includes both the point
estimate and the confidence region.

We mast digress momentarily to define these terms. The
point estimate is simply the most likely position of the emitter
given the sensor readings. Due to the error in the sensor
readings, it is unlikely that the point estimate will exactly
equal the true location of the emitter. This is why confidence
regions are constructed. The region estimate, or confidence
region, measures how far the point estimate is likely to be from

* the true position of the emitter. In Figure 3 there is a 95%
confidence ellipse of the type that one would calculate using the
Stansfield model. As before, E represents the emitter, and E'
the point estimate of the emitter's location. The meaning of
this ellipse is that if one estimates the location of the emitter
100 times, and constructs a confidence ellipse each time, one
would expect about 95 of the confidence ellipses constructed to
contain point E.

While the confidence region in this example is an ellipse,
confidence regions can take many different shapes. In Figure 3,
both the ellipse and the square are 95% confidence regions.
Since the ellipse captures the same probability in a smaller
area, it is a better estimate of the error in our point estimate.
In fact, this is the definition of an optimal confidence region:
it is that region which captures the desired level of confidence
in the smallest area.

Because of the assumption of parallel error displacement,

3



the optimal confidence region in Stansfield's model is an ellipse
having the formula shown in Equation 2.

(2) n 2, a

This is the ordinary confidence region associated with the
bivariate normal distribution.

I
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III. Modifications: The C2inic's Model

As is the case with any -,.eoretical research, it Is
interesting to drop assumptions and determine whether the
conclusions are significantly altered. In studying this location
problem, the Clinic retained the assumptions enumerated above
with the exception of Assumption (3) -- the parallel error
displacement assumption. In its place we use the more natural
assumption of angular error displaoemt. That is, we measure the
error in a sensor reading by the number of degrees that it
deviates from the true line of bearing -- the difference
Mu(Alpha) - Alpha. Further, we assume that this error is
normally distributed with a mean of zero and some known standard
deviation. Figure 4 shows an exampie of this model. As in

t Figure 2, the true lines of bearing have angles Mu(Alpha) and
Mu(Beta) with the baseline. Sensors I and 2 return the angles
Alpha and Beta respectively, yielding the estimated emitter
location E'. The measurement errors in these readings are
Mu(Alpha) - Alpha and Mu(Beta) - Beta.

4 Because we have assumed that the error is angular and not a
parallel displacement distance, it can easily be shown that the
distribution of the emitter location estimate about the true

Slocation uf the emitter is no longer the bivariate normal. The
nature of the distribution is shown by the following analysis.

Since we have assumed that these errors are normally
distributed about a mean of zero, we know that 95% of the
readings will fall within + 2 standard deviations of the true
line of bearing. In all of our examples we have arbitrarily
chosen a standard deviation of 1 degree. Thus, if Mu(Alpha) a 80
degrees and Mu(Beta) = 110 degrees, then we would expect 95% of
the readings for sensors I and 2 to fall between 78 and 82
degrees, and 108 and 112 degrees respectively. Similarly, 99% of
the realings should fall within 3 standard deviations -- between
77 and 83 for sensor 1, and 107 and 113 for sensor 2. The
bearing lines associated with these extreme values give us the
large quadrilateral in Figure 5. Further, we know that this
quadrilateral contains about 98% (.99 x .99) of the emitter
estimates. To obtain a rough estimate for the probability
density we constructed lines of bearing corresponding to errors
of + 0.5, . 1.0, ± 1.5, + 2.0, + 2.5, and * 3.0. These rays
divTde the large quaurilateral into 25 small quadrilaterals, as
shown in iigure 5.

As the next step, we found the probability of a location
estimate falling into each of these snall quadrilaterals.
Because of symmetry in the angular error distribution (the

N5



normal), corresponding quadrilaterals will have equal
probabilities. For instance, the uppermost and bottomost

o quadrilaterals in Figure 5, both labeled Y, have the same
probability. It is clear, however, that their areas are very
different. We termed this array of quadrilaterals with assigned
probabilities a probability grid.

These quadrilaterals marked Y have the same probability,
0.003672, but their areas are 3410.3 and 1587.7 respectively.
Thus, the average probability density in these regions are
0.00000108 and 0.00000232 -- which differ by a factor of 2.
Clearly the distribution of the location estimates about the true
location is skewed.

This shows that even when the angular error for each line of
bearing is normally distributed.,, the'points of intersection of
these lines of bearing do not have a bivariate normal
distribution. Finer grids of more than 3600 smll' quadrilaterals
were produced both graphically and analytically by computer.
Both methods showed evidence that the points were not distributed
according to the bivariate normal probability law. Because the
density function is not the bivariate normal, there is no reason
to believe that th^ best confidence regions are elliptically
shaped.

I
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IV. Methods to Determine Functional Form

The Clinic used the probability grid derived above to
explore the shape of the density function in a number of ways,
including strips of probability and bands of equi-density.

As was stated in the previous section, if the bivariate
normal function were used, then tie large quadrilateral would be
symmetrically shaped and any two corresponding quadrilaterals,
such as those Jn Figure 5, would have the same average
probability density. If bands of equi-probability were graphed
so that only those points satisfying a given inequality were
plotted, one would expect to see the points evenly distributed
above and below the true emitter locatio,. When angular
displacement is used, It is clear that the points are not equally
distributed about the true emitter location. If fact, if regions
of relatively high density are graphed, then the majority of the
plotted points will lie below the intersection of the true lines
of bearing. Conversely, if low density regions are graphed, then
the majority of the points will lie above the intersection of the
true lines of bearing. This tells us that regions above the true
location have lower density than those below.

Examining the "strips" shown in Figure 6 yielded similar
results. These strips were constructed sc as to divide the
distribution into a number of bands of equal width both above and
below the true location of the emitter. The probability of any
reading falling into each of these strips was calculated using a
probability grid. If the distribution were the bivariate normal,
we would expect corresponding strips above and below the true
emitter location to have about the same probability. Table 1,
however, shows a case in which the skewness of the distribution
is quite clear.

Having tried other techniques to determine the shape of the
probability function and its corresponding confidence regions
without much success, thE Clinic decided to investigate
transforming the probability funtion from the angular to the
rectangular coordinate system. This Is equivalent to
transforming the bivariate normal (Equation #1). The
transformation for the X and Y coordinates are given below:

(3)X D tan $ y f D tan a tan $
tan 0 - tan a tan 0 - tan a

7



or inversely,

(4) . tan-(i) a tan- 1(( )

To obtain tUe joint density of X and Y we use the following
transformation formula:

Sxv(X,VY) - (tan=' tan - , 1

where 131 is the determinant of the following matrixt

rs -Y X-

- 0 2 22 XD) 2+ 1

Solving, this gives us

(7) a M (X2.y2) YDy2

Using these transformations and the bivariate normal it is
possible to rewrite the equation in terms of X and Y. The result
is presented below:

f (xY) Y 2D

XIY 21t gra (X2+ey2) ((X-D)2.y2) I
(r -i _1 ( a j1y -IVY0 ~2'
{ftan -tan t tam - tan XOD ])
where (X0,9Y) c~orresponds to Csu)

"i~



However, this density function is not easy to analyze either
analytically or numerically. Therefore, the Clinic transformed
the optimal confidence region from the angular coordinate system,
using the same relationships for X and Y. This yielded the
following inequality:

(9) (tan t -an 2 tam I
n1 ____0_ + X-D -tn X0 D 2

"When the boundary points of this inequality are graphed, the
region is nearly, but not quite elliptical.

Since it was not possible to tell visually how significantly
these regions differed from ellipses, the Clinic performed a
least squares analysis on the regions. First, we generated 50
boundary points from the original angular confidence inequality,,
Tnese points were then transformed into the XY coordinate system
using the transformation formulas. These are the data that were
used in the regression.

The general form of a quadratic equation in the XY system is
given below:

(10) AX 2 + B'Xy + Cy2 + D'X + E'Y + F' m.0

I
, Manipulating this equation yields a form which can be estimated

by the techniques of ordinary least squares.

(11) X2 - -BXY - CY2 -DX EY - F
where B - B'/A', C % C'/A'• D I D'A/', E " E'IRA

and F - F'I/A'.

While this estimated ellipse is only an approxi'Ation to the
transformed region, it is quite close. For example, When we
estimated a 95% confidence ellipse in the angular coordinate
system for the Mu(Alpha),80 degree / Mu(Beta),110 degree oa.e,
the estimated ellipse using regression contained 95.011%
of the probability. Such a small deviatJon from v-he desired 95%
can be accounted for by nunlerloal errors inherent in the Method

mfployed, as well as the grld size used. DIue to the closeness of

9



the approximation, and the difficulties in analyzing the
transformed regions, it is these ellipses, determined by linearregression which we will use to contrast with the Stansfield
ellipses.

1A I.
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V. Comparison of the Confidence Region Methods

We have now examined two distinct methods of constructing
confidence regions: Stansfleld's and the Clinic's. In this
section we shall compare the results obtained from both methods
when they are applied to the Clinic's version of the two-sensor
model. The results show that while the Clinic's method is not
necessarily the optimal method of oconstruoting confidence regions
given out model, it is a better method than Stansfield's. That
is, the Clinic's confidence regions oapture a given amount of
probability in a smaller area than do Stansfield's.

The first method is that formulated by Stansfield, based on
his parallel displacement assumption. Since this assumption
allows the bivariate normal distribution to be used, the optimal
confidenue region is the ordinary ellipse based on this
distribution. However, if the parallel displacement assumption
is dropped, and our model used in its place, the Stansfield
confidence ellipse is no longer optimal. Instead, we propose the
""ttransformed" region which was derived in the previous sotion by
transforming the optimal ellipse in angular coordinates into a
region in rectangular coordinates.

As we have discussed, this transformed region is almost, but
not quite, elliptical. In the numerical examples presented here
we have used our least-squares approximation to the transformed
region.

At this point we must digress momentarily to consider the
relationship between confidence regions and probabillty regions,
which are sometimes known as tolerance regions. An example of a
probability region is one of the quadrilaterals in our
probability grid. Based on a certain probability distribution,
it contains a certain amount of probability. A 95% probability
region is simply a region which ocrtains 95% of the
distribution's probability. An optimal probability region we
define as that region which contains the desired probability with
the smallest area. By contrast, the optimal 95% confidence
region is that region with the smallest area which will catch the
true 3ooation of the emitter 95 times out of one hundred.

The relationship between these Is that the optimal way of
constructing a probability region about the true location of the
emitter is also the optimal way of constructing a confidence
region about an estimate of the emitter's location. Ihis assumes
that the probability region is based on the sampling
distribution, but this is irrelevant since the sampling and the
base distributions are the same when only one observation Is

I J I l l l l l l l l



taken irrelevant. The result is that instead of constructing
confidence regions we may construct probability regions using the
same methods, and arrive at valid conclusions. All of the
analysis in this section was done using probability regions.

In particular we shall focus on the case where the true
lines of bearing from Sensors 1 and 2 are 80 degrees and 110
degrees respectively. Further, the sensors are 1000 meters
apart, and the error for both sensors has a standard deviation of
I degree.

Figure 7 contains a graph of the 50%, 75% and 95%
probability ellipses calculated using the classical method, and
Table 2 lists their area and the probability contained in them.
Note that they are concentric and centered at the true emitter
location. Notice further that they do not contain the correct
amount of probability. In fact, they tend to contain about 25%
less probability than they ought to. This is because
Stansfield's ellipses are inappropriate when the angular error is
normally distributed.

The graphs of the 50%, 75% and 95% regions calculated using
the Clinic's method are shown in figure 8,, and the -I areas and
probabilities are listed in Table 3. Due to the ak# iss of the
density function, these regions are not centered i . the true
emitter location. Rather, the higher the desired level of
confidence the further the region is positioned from the
baseline. These regions, which are only approximations, contain
close to the correct probability. In fact, the differences are
small enough to be indistinguishable from numerical errors
inherent in our methods of analysis. The use of a probability
grid, for example, guarantees that our program will return
values good only to a few decimal places.

I Also included in Tables 2 and 3 are figures for the 70
degree/170 degree and 45 degree/135 degree cases. The related
ellipses are graphed in Figures 9, 10, 11, and 12. Please note
that the scale of the drawing varies from figure to figure, so
direct comparisons of size are difficult. The "area" values in
Tables 2 and 3 should aid comparison. These results strongly
indicate that using the Stansfield model brings unnecessary error
into the process of construction confidence regions.

12
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4 %V. Sensor Location Error

Thus far, we have discussed the angular measurement error
that can occur from a given sensor reading. HW-ever, other types
of error are also encountered, such as sensor location error.

Sensor location error occurs when the actual location of the
"sensor differs from the reported location of the sensor. Fcr
example, suppose it is believed that the sensor is located at
position Si Ln Figure 13 when, in fact, it is at point A. The
effect is that the reported angle, and consequently line of
bearing, will be applied to the point S1 instead of A. The
result is that the estimated location is E' instead of E. Thus,
the estimate of the emitter location has shifted from E to E'
be-ause of the location error.

To analyze the effect of this error, tht Clinic began by
V" assuming that the distribution of the sensor location error

follows the bivariate normal probability law. Then, we
constructed a circle with a radius of 3.5 si3g about the sensor.
Due to the characteristics of the ncrumal probability
distribution, we know that there is a 99% probability that the
sensor lies within the circle. However, it is not necessary to
use a two dimensional region such as a circle to have a 99%

-'. probability. Note that any point on or within, the circle has a
corresponding counterpart on the baseline. Hence, if the sensor
is located anywhere on the leftmost dotted lire, it will return
the same reading for the line of bearing. Thus, we need to
include only the point A' in the analysis. Similarily, this is
true for any sensor position. As a result, we are able to
restrict the analysis to the points that lie on the baseline.

For a given point on the baseline, a line can be drawn to
the true emitter location. The angle that is formed with the
baseline is the reported angle. It is this angle that is then
applied to the point S1, which is where the sensor is believed to
be. The resulting estimate of the emitter Is E' (See Figure 14).

It becomes of interest to examine the distribution of these

angles for a given sensor location. Thus, a portion of the
baseline (at least three sigma) Was subdivided into fifteen
equally spaced intervals. A line segment was constructed from
the midpoint of the interval to the true emitter location. From
this, the angle that is formed by this line segment and the
baseline can be calculated. Each of these intervals has a
probability associated with it, and this probability corresponds
to the angle as well. This distribution of angles is plotted in
Figure 15 along with the normal distribution having the same mean

4_ _13



and sigma values. As this diagram shows, the distribution or the
angles is very close to normal. Thus, we have demonstrated that
the sensor location error problem is equivalent to the angular
measurement error discussed earlier, and the dintribution of the
angles about the mean is approximately normal.

41
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VI. Other Topics

During the course of the year the Clinic also examined a
number of oth'er topics, including a one-radar scenario,
systematic error due to equipment bias, and the potential use of
a digitizer or similar hardware by an intelligence analyst.

The one-radar scenario is based on the Clinic's two-sensor
xmodel, and follows all of the same assumptions. The only

difference is the nature of tOe sensor. In the two-sensor case,
each sensor returns a single line of bearing. Thus, two sensors
are required to locate an emitter. In the one-radar scenario,

shown In Figure 16, we use a full radar set in place of a sensor.
Since the radar is not merely a passive receiver of radioI isignals, but also a transmitter, it is able to supplement the
line of bearing with a distance reading along that line of! bearing.

In Figure 16, the emitter is denoted by E (actually, it

could be any object large enoL.gh to register on a radar), and the
radar is denoted by S. The line SE is the true line cf bearing
"from the radar to the emitter, and the length of line segment SEI AV is the true distance, r. The angle the true line of bearing

f makes with the baseline is a. In this figure a reading has been
taken, returning the values (r',a'), and the resulting estimate
of the emitter's location is E'.

j If Stansfield's assumptions are applied to this model, only
one is modified -- that of parallel error displacement. Instead,
error is measured in the natural units: degrees for the angle
"reading and meters for the distance reading. Further, we assume
that the error in both of these readings Is normally distributed
around zero error with some known standard deviation.

The analysis done on this model Wms based on a probability
grid completely analogous to that used in the two-sensor ca3e.
Such a grid is shown in Figure 17. As before we calculated the
probability of a reading falling In each of the swall regions,
and used this to approximate the density function. While thegrid shown has only 25 sub-regions, that actually used in the

computer analysis had over 3600.

While this is less complex problem mathematically than the
Clinic's two-sensor model, it is clear from the grid that many of
the same coments apply. For example, the distribution of radar
readings certainly does not follow the bivariate normal
distribution; as in the two sensor case corresponding sub-
regions have differing areas, and so the density function is

15



skewed. While we did no further analysis, we expect that the
location of confidence regions constructed for this model would
depend on the level of confidence, just as in the two-sensor
case. However, if the distance r is large enourh compared to the
possible errors in the angle and distance readings, it is
possible that the bivariate normal distribution may be a good
approximation to the true density. More research would be
required to determine exactly when this might be the case.

The other type of error that the Clinic began to investigate
"is systematic error. This error occurs when the readings from
the two sensors are perfectly correlated. This situation happens
when the same piece of equipment it used to take both readings,
due to inherent equipment bias. It was not possible to treat
this subject in the depth desired. This topic will be pursued
further next year.

Lastly, the Clinic considered in limited detail a related
problem: that of terrain features. The area contained by a
confidence region may include a lake, gorge, or other natural
area in which one would hardly expect to find an emitter. Yet
the confidence region assumes that every point within it is a
possible location. One would deal with the problem by using
conditional probability techniques, That is, there are ways ofI calculating the confidence that the emitter is in the region,
while taken into account that fact that it cannot be in the,
middle of a lake. The difficulty is that terrain features seldom
have mathematically ple&sing hapes, and are thus hard to work
with, One solution to this problem involves the use of a
computer input device called a digitizer.

While a lightpen could also be used, the Clinic had access
to the digitizer at the Rose Institute, a research institute at
Claremont MoKenna College. With this devioe a map of the terrainI could be placed on the digitizer table, and a "picture" of the
probability distribution "overlayed" on it by the computer. An
analyst would then be able to specify very irregular regions by
drawing on the digitizer table with an electronic stylus. Lakes
and other features could be easily blocked out.

The Clinic wrote a small amount of rather limited software
for this purpose, drawing on a private software library produced
by the Rose Institute. This software was sufficient for our
research, but not for the task outlined above. We believe that
this is an idea worth pursuing in the future.
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VII. Conclusion

In its analysis, the Clinic has relied on extremely simple
models, with no more than two sensors, to examine and critique
the classical aensor/looation problem first studied by E.G.
Stansfield. Yet even with such models, the effect of modifying
Stansfield's parallel error displacement assumption Is striking.
When the methods used by Stansfield for constructilng oonfidence
ellipses is used with the probability density derived by the
Clinic, the results are decidedly far too optimistic. As we
believe that our modification is the natural way to relax
Stansfield's assumption, our results could conceivably be quite
important for practical intelligence gathering systems.

It is difficult, if not impossible, to predict how our
modiflcation would effect situations with three or more sensors,
especially since different intelligence systems deal with
multiple sensors in different ways. However, it is clear that it
would be dependent upon the configuration of the sensors; a
triangle of sensors centered on the emitter might conceivably
mitigate the error, whereas three sensors all arrange on one
baseline might even worsen the error. Further, while the Clinic
has studied several different sources of errors, little has been
done to consider them together. It may be a decidedly ghastly
brew.

Finally, the Clinic chose to take only one observation from
the sensors in their analysis, as it was believed that individual
readings would not likely be independent. It is possible that
with more observations the differences between the two sorts of
confidence rogions would grow less; it is also possible that
errors would multiply. At any rate, it is clear that a sizable
amount of research remains.
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TABLE 1:

Probability Strip Analysis

The following table contains the results of a probability
strip analysis performed on the 80 degree / 110 degree oase. The
standard deviation of the errors was assumed to one degree for
both sensors, and the width between the sensors was 1000 mrters.

The left oolumn shows the probability contained in the
strips below the true location of the emitter; the right oolumn
shows the probability in the corresponding Oolumn above. As is
easily seen, the strips just below the emitter oontain more
probability than those just above. Thus, the density is skewed.

I Lower striser StriRs

0.2025 0.1976
0.1723 0.1609
0.0828 0.0768
0.0306 0.0435
O.0060 0.0160

Width of strips u 50 meters
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TABLE 2:

Areas and Contained Probabilities for Stansfield Ellipses

True Lines of Bearing (Cin degrees)

MA=80; B-l1O;1w- KA=70; M~lOM 14Au45;, M-1l35;

95% Confidence
Area! 20887 303 1433
Probability: 77.173% 58.264% 77.629%
Center: X Coord. 326.35 60.31 500.00
Center: Y Coord. 1850.83 165.69 500.00

75% Confidence
]-ea: 9665 140 663
Probability: 49.618 34.1423 49,774S
Center: X Coord. 326.35 60.31 500.00
Center, Y Coord. 1850.83 165.69 500.00

50% Confidence
7Fea- 303 70 331
Probability: 28.834 18.495% 29.635%
Center: X Coord. 326.35 60.31 500.00
Center: Y Coord. 1850.83 165.69 500.00

Note: All figures in this table were calculated unde"' the
asszmption that the two sensors were located 1000 meters apart,
and that the standard deviation of the error in the sensor
readings was one degree. Distances are in meters and areas are
in square meters.
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TABLE 3:

Areas and Contained Probabilities for the Clinic's Ellipses

True Lines of Bearing (in degrees)
M x ; MB=-110; MA M70 M 17I 0; HA=45,t MB=-135;

95% Confidence
ia4: 13257 989 2949

Probability: 95.002$ 95.011 95.379%
Center: X Coord. 324.36 60.90 499.88
Center: Y Coord. 1875.51 167.27 500.52

75% Confidence
V'a: 19800 4155 1364
Probability: 75.015 75.027% 75.711$
Center: X Coord. 325.44 60.58 499.94
Center: Y Coord. 1862.16 166.42 500.25

503 Confidenoe
Via.a 9884 227 692
Probability: 50.096 50.230% 50.8673
"Center: X Coord. 325.90 60.44 499.98
Center: Y Coord. 1856.50 166.06 500.13

I Note: All figures in this table were caloulated under the
assumpt-ion that the two sensors were located 1000 meters apart,

f and that the standard deviation of the error in the sensor
readings was one degree. Distanoes are in meters and areas are
in square meters.
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F i ,..re 1

Stansfield's Two-Sensor Model
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Figure 2

Stansfield's Two-Sensor Model
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Figure 3
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Figure 4

The Clinic's Two-Sensor Model
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Figure 5

The Clinic's Probability Grid
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Figure 6

Probability Strip Analysis
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Figure 7

Stansfield's Confidence Ellipses for
the 80 degree / 110 degree case.
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Figure 8IS The Clinic's Confidence Region for the
80 degree /110 degree cases
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Figu~re 9

Stansfield's Confidence Ellipse for
the 70 degree /170 degree case.
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The C±Mc's Figure 10
The linc'sConfidence Region for the

70 degree /170 degree case*
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Figure 11

Stansfield's Confidence Ellipses for
the 45 degree / 135 degree case*
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Figure 12

The Clinic's Confidence Regions for the
45 degree /135 degree case#
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Figu~re 15
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Figure 16

The Clinic's One-Sensor Model
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Figure 17

One-Sensor Probability Grid
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